Table 2 Metal Concentrations – 1989 to Present Iron to Zinc J = Result is detected below the reporting limit or is an estimated concentration. Q = The reporting limit was elevated due to high analyte levels The MDL was raised to accompdate the detection of constituents in blank Compound is also detected in the blank. Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations in ppb) 20.0 10.0 ZINC 20.0 20.0 20.0 20.0 14.3 7.9 37.0 2.7 20.02 SERVICE SERVICE 0.000 2 2 2 2 2 2 3 0.7 2.0 8.6 0.1 2 2 2 0.1 0.1 9 9 9 9 9 22 9 2 2 2 2 2 2 2 1.0 0.5 2 2 0.5 0.5 0.5 0.5 10.0 10.0 1.0 93 0.8 0.3 1.0 0.2 9.0 5.0 4.9 3.1 1.3 5.0 1.0 Nickel 16.0 21.0 48.0 23.0 5.0 1.0 18.8 12.3 48.0 4.0 9.0 Mercury **(5)** 2 2 2 1.0 1.0 9 8 8 8 0.1 £.0 0.1 6 0.2 10 0.1 0.0 0.2 0.0 E 5 2 2 0.1 0.1 0.1 Manganese 35.9 4.6 5.2 10.3 7.7 35.9 1.4 20.0 1.4 5.6 8.3 92 1.0 3 3 1.0 2 2 % 0.4 2 1.0 1.0 1.0 67 2 2 9 2.5 8.7 50.0 0.4 3.0 1081.22 5100.00 70.00 **58888**8 5 8 5 8 370 800 840 1500 1500 370 130 3400 710 710 610 5100 610 1100 1100 782.38 330 280 99 620 180 No Data 09/14/93 11/04/93 Mean Std. Dev. Max Min 12/21/94 03/16/95 07/08/92 09/18/92 12/09/92 04/09/93 03/10/94 06/09/94 Sampled 01/16/96 09/10/91 01/08/92 03/10/92 05/14/92 07/08/92 No Data 09/13/95 11/07/95 03/19/96 06/10/96 26/90/90 11/17/97 02/09/98 08/04/98 11/02/98 02/04/99 05/03/99 07/27/99 11/01/99 01/31/00 05/01/00 96/60/90 05/11/98 01/31/97 09/02/97 Date 96/90/60 Well Number NRF-7 NRF-7 NRF-7 NRF-7 NRF-7 NRF-7 J=Result is detected below the reporting limit or is an estimted concentration. onstituents in blank Q=The reporting limit was elevated due to high analyte levels B = Compound is also detected in the blank. J = Result is dete U = The MDL was raised to accomodate the detection of constituents in blank Wa = Post digestion spike recovery fell between 40-85% due to matrix interference D = Results were the result of a dilution Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations in ppb) | | | | | | | | | | < 10.0 | < 10.0 | < 10.0 | < 10.9 | < 10.0 | 10.0 | 40.0 | - 10.0 | > 20.0 | 13.0 | - P | 120.0 | 17.0 | | | 9.5.6 | < 20.0 | 97.0 | C C | 0.10 | 20.0 | | 18.7 | 24.3 | 120.0 | 1.6 | 100 | 0.01 | > 10.0 | د 10.0 | 0'02 | 9.1 | < 10.0 | 25.0 | | UB 20.0 | |----------|----------|------------|--------------|-------------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|------------|----------|------------|----------|-------------|-----------|----------|----------|----------|----------|----------|------------|----------|----------|---------------------|--------|-----------|---------|-------|-----|-----------|----------------|----------|----------|----------|--------------|----------|--|----------| | | | | | | | | | | | < 0.6 | < 0.5 | ≤'0 > | 9'0 | 0.5 | 0.5 | < 0.5 | | < 0.3 | | * 0.0
** |)
(4) | | v 0.1 | | V.0.1 | 0.1 | | 200 | | | 0.3 | 0.2 | 0.5 | 0.0 | u c | | | | | < 0.3 | < 0.3 | 0'0 | The second secon | > 0.1 | | 0°L × | 1,0 | < 1.0 | 0′1 | 1.0 | 1.0 | 01 > | ্ৰ 1,0 | < 1.0 | >
100 | < to | 01 > | ح 10 | c) / | - T0 | ح 1.0 | 0;1
v | | \$0.0
V | < 0.5 | . 03 | 58 | J 0.2 | 9'0 | 9:3 | <.0.5 | 900 | 0.0 | e co | | | 0.8 | 0.3 | 1.0 | 0.2 | | 2 S | | | | 9'0 | 9'0 > |) 0.1 | The second secon | 970 > | | | | | | | | | | | 2.0 | 1.0 | 1.0 | 1,0 | 2.0 | 0.1 | 4.0 | 9 | 4.0 | 6'0 | 1.6 | 7.5 | 7 | 19. | 200 | 4.t | 2.0 | 5.0 | 2 :
8 : | 0.00 | 7 C | | 2.2 | 1.8 | 5.0 | 9.0 | 9.0 | 2 0 0 | 02 | 2.0 | 20 | 0'9 > | 9.6 | 3.5 | N. 25 C. St. C. St. L. | 3 2.7 | | 0.0 | 6.0 | 0.0 | 4.0 | | 4.0 | 0% | 7.0 | 0'# | 8.0 | 0'9 | 6. | 0'9 | 0'9 | 9.0 | 0.6 | 6.0 | 10.0 | 6.3 | 5.2 | C4
C8 | 122 | 59 | 10.0 | 7.00 | 10.0 | 9.5 | 1 | nn i | 8 3 C | 3 | 6.1 | 2.5 | 11.0 | 1.0 | | 2 C | | 202 | 10,0 | 4.8 | 3.8 | 4.5 | である。
では、
では、
には、
には、
には、
には、
には、
には、
には、
に | 2.3 | | < 0,1 | . O . | # 6 | ~ 0.1 | F0 → | > 0.1 | < 0.1 | 3 | - 0.1 | 10 | | . 0.1 | - O.1 | < 0.1 | £0 > | - e- | . 6 | | 0.2 | < 0.2 | | 1.0 Les | 0.2 | 0.2 | 0.2
V | 0,2 | 0.2 | 7 | | 7 C | 3 | 0.1 | 0.0 | 0.2 | 0.1 | | 3 G | \$ \$ | ij ē | | 0.2 | > 0.2 | 13 | ESPECIAL STREET, STREE | (BJ) 0.2 | | | | | | | | T. | | | o:01 | × 10,0 | - 10.0 | 20.0 | < 10.0 | 0'01 > | < 10.0 | 10.0 | 0.0 | 7.6 | 3.6 | 24.0 | 95 | 5.5 | 10.0 | 3.6 | 33 | 5.4 | 000 | 24.0 | O'GE | A Principal Control | 10.5 | 6.3 | 24.0 | 3.3 | | 200 | 000 | | | | 7.0 | 98 | ALPERT PROBLEMS NO. 301 | \$*F | | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1,0 | 97 | 0.1 | 1.0 | 4.0 | - 1.0 | 4.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0'09 | 1.3 | 1.0 | 13 | £ 0.5 | J. 0.4 | 4.0 | < 1.0 | × 1.0 | 4.0 | 07. V | | 2.3 | 20 | 2.6 | 8.4 | 50.0 | 0.4 | | | 2 9 | | | | 1.0 | 0.2 | # 14 E at 17 K 65 C 17 C 18 E at 1 at 1 | J 0.4 | | 210 | 330 | 909 | 180 | 330 | 280 | 908 | 920 | 210 | 110 | 118 | 110 | 069 | 180 | 160 | 70 | 230 | 340 | 540 | 88 | 1800 | 400 | ر 80 | - 100 | 130 | 101 | 270 | 310 | 700 | 2/3 | 754 | 600.12 | 1018.82 | 4800.00 | 70.00 | | 8 6 | 98 V | 2 8 | 3 93 | | - 10
- 40 | 4 100 | F - 19 7 (8) (8) (8) (8) (1) (8) (1) | 31 | | 12/09/92 | 04/09/93 | 06/10/93 | 09/14/93 | 11/03/93 | 03/15/94 | 06/13/94 | 09/12/94 | 11/04/94 | 03/17/95 | 26/60/90 | 09/14/95 | 11/08/95 | 01/16/96 | 03/19/96 | 06/10/96 | 96/80/60 | 01/31/97 | 26/90/90 | 09/02/97 | 11/18/97 | 02/09/98 | 05/11/98 | 08/02/38 | 11/02/98 | 02/04/99 | 05/03/99 | 07/27/99 | 11/01/99 | 01/31/00 | 00/10/60 | Mean | Std. Dev. | Max | Min | | 98//1//10 | 03/25/96 | 08/11/90 | 03/04/90 | 06/10/97 | 09/04/97 | 11/17/97 | | 02/10/98 | NRF-7 | NRF-7 | NRF-7 | NRF-7 | | | | NRF-7 | NRF-7 | NET / | NEF-7 | | | | | 1 | NHF-8 | NEF | NDE B | NPF-8 | NRF-8 | NRF-8 | NBF-8 | | NRF-8 | B = Compound is also detected in the blank. J = Result is detected below the reporting limit or is an estimated concentration. O = The MDL was raised to accompdate the detection of constituents in blank O = The reporting limit was elevated due to high analyte levels Wa = Post digestion spike recovery fell between 40-85% due to matrix interference D = Results were the result of allution Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations in ppb) | NPF.9 | 09/11/60 | | 4 | | | | | | mampin | 2III.2 | |--------------|-----------|-----------------------------------|----------|--------------------------------|--|--------|-------|-------------|---------------|------------| | 0 0
L L | 05/11/39 | 3 (| | 000 | 3700 | V (0.0 | 6.0 | 0.5 | 0.1 | < 20° | | 0 4 | 66/60/60 | 38 | 0. | - i | 6.2 | × 10.0 | 0.0 | < 0.5 | < 0.1 | J 3.1 | | ίΤ-8
1 | 66/87/70 | 5 | 1.2 | o:01 > | < 0.2 | - 10.0 | 79 > | 50. > | 1.0 | 2 | | τ <u>.</u> ί | 11/02/99 | 570 | 3.8 | e 6 | < 0.2 | 10.0 | e.0 | 50 | 100 | 3.2 | | 8-
 | 02/01/00 | 160 | 5.0 | 2.2 | < 0.2 | 0'0# > | 9.6 | 001 | 10.0 | | | 4F-8 | 05/05/00 | 180 | 3.2.4 | 17 | J 6.0 | 0.04 | . 4.7 | 10.0 | | > 20.0 | | | | | | | | | | | | | | | Mean | 139.94 | 4.3 | 6.2 | 0.2 | 5.4 | 3.5 | 9.0 | 0.2 | 111. | | | Std. Dev. | 167.72 | 12.2 | 4.2 | 0.1 | 3.9 | 1.4 | 0.3 | 0.2 | 6.9 | | | Miss | 570.00 | 20.0 | 10.0 | 0.2 | 10.0 | 5.0 | 1.0 | 0.5 | 25.0 | | | WIID | 10.00 | 0.2 | 0.7 | 0.1 | 1.0 | 2.0 | 0.1 | 0.0 | 3.1 | | Ĺ | 30,01,10 | | | | | | | | | | | בי
היי | 01/18/96 | 20 | 0 | 1000
V | 170 . > | 0.1 | 5.0 | 1.0 | 9'0 | 701 | | F F | 03/26/96 | 961 | 01 v | × 10.0 | v 0.1 | 1.0 | 2.0 | - 10 | 5'0 > | < 10,0 | | Γ Γ
υ ς | 06/11/90 | 09 | 0'T × | 000 | ************************************** | 0.1 | 20 | - 1.0 | 9'0 > | > 10.0 | | ې
د د | 09/04/96 | 30 | 0)
V | < 10.0 |) 0 1 | 4.0 | 2.0 | - 1.e | 2'0 > | > 10. | | 6 L | 01/30/97 | 984 | 20.0 | 0.8 | | - 10.9 | 2.0 | | | < 20.0 | | NDE 0 | 06/10/97 | 8 3 | | 67 | 9.2 | 4.6 | 2.0 | < 0.5 | \$
0 . | 6'9 | | n c | 14 (40/07 | 5 ! | 0 | 1.2 | 0.2 | 3.0 | ≥.0 | 6.6 | 6.3 | < 10.0 | | P C | 19/01/11 | 8 | 60
70 | | | * | 20.00 | 1.0
V | € 0.0 | 24.0 | | р ф | 05/13/98 | 011 | 90 % | 2.5 | 0.1 | 8'9 | 5.5 | 9 | ₽0 | (3) 21.0 | | , G | 08/01/80 | | 3 4 | | V | 90 T | 5.3 | > 0.5 | 1°0 | 11. | | F-9 | 11/03/98 | 480 | | 200 | 7 S | 31. | 0.0 | 50.5 | | | | | 02/11/99 | | L. | | 4 6 | 0,1 | 3.1 | e 2 | | | | | 05/04/99 | 2 88 | | 200 | 7 6 | 10.0 | 0.4 | 9 0 | | 20,0 | | 6-1 | 07/28/99 | | | | | 2 6 | O'O | C C | - S | 707 | | NRF-9 | 11/02/99 | | | | 4 C C | | 0.6 | g 'c | 5 | < 20.0 | | 6 | 02/01/00 | 30 | 3.0 | 1 | 100 | | 7 | or or | 7 600 | 3 3 | | | 02/05/00 | 110 | | 700 | 0.2 | 40.0 | | 001 | 9 0 0 | 2000 | | | | | | | | | | | | | | | Mean | 110.13 | 4.0 | 6.7 | 0.2 | 5.4 | 3.3 | 9'0 | 0.2 | 14.9 | | | Std. Dev. | 105.70 | 12.3 | 3,9 | 0.0 | 4.0 | 1.4 | 0.3 | 0.2 | 6.2 | | | Max | 450.00 | 50.0 | 10.0 | 0.2 | 10.0 | 5.0 | 1.0 | 0.5 | 24.0 | | | MIIN | 18,00 | 0.3 | 1.2 | 0.1 | 1.0 | 2.0 | 0.1 | 0.0 | 4.8 | | NIDIT 10 | | | | | | | | | | | | | 90/00/30 | 2000 | | | | | | | | | | | 09/09/90 | O CALL | | 0.03 | ₽'0
> | 0.6 | 2.0 | 4.0 | 0,5 | > 10.6 | | | 09/04/96 | | 3 8 | Ding. | 601 | 3.0 | 2.0 | 9.T | 90. | 0′01 > | | | 03/04/30 | 3000 | 200 | 3 8 | 5 | 8.0 | 2.0 | 4.0 | 9.0 | × 10.0 | | | 06/11/07 | 200 | O'RO | 9.61 | | 10.0 | 9.2 | | | < 20.0 | | NPF-10 | 09/04/97 | 200 | 3 4 | 2 2 | 6.2 | 911 | 97 | × 0.5 | 80 | 7,2 | | | 11/18/97 | 2000
2000 | 2 2 | 77 | 0.5 | G S | 5.0 | 50 > | 10
10 | 10.0 | | - | 02/10/98 | 1200 | 8 | 200 | V - 6 | 25 | | 70 7 | 0.0 | i e | | 7 | 05/13/98 | 150 | 21 | | | n dec | 0 0 0 | 6 0 0
V | ¥ . | UB 29.0 | | NRF-10 (| 08/02/98 | 113 | 1.0 | 3.2 | 6 0.2 | 24.0 | 5.0 | 20 | 7 | 200 | | | 11/03/98 | 100 | • | | | | | | 7 | | | | | 1000 SOUTH STORY CONTROL OF STORY | | 京のおかけませんがはいかご
ではないかできませんが、こ | V | 061 | 7 | 90 | +0 | 0.5 | J = Result is detected below the reporting limit or is an estimted concentration. U = The MDL was raised to accomodate the detection of constituents in blank B = Compound is also detected in the blank. Q = The reporting limit was elevated due to high analyte levels Wa = Post digestion spike recovery fell between 40-85% due to matrix interference D = Results were the result of a dilution Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations in ppb) | 20.0 | | | 0,61 | < 20.0 | | 15.2 | 9.2 | 38.0 | 4.9 | 0.01 | 1 | 40.0 | 10.0 | 40.0 | 13.0 | 12.0 | 91.0 | UB 17.0 | 9.6 | - 10.0
 | 2.2 | 200 | 20.0 | < 20.0 | 20.0 | 0'6
7 | 3 | 6.419 | 6.5 | 31.0 | 5,5 | 10,0 | 2 of t | | | 7.6 | , 10,0 | | UB 18.0 | 11.0 | | 6.3 | ≥ 20.0 | |-----------------------|----------|------------|----------|----------|------|--------|-----------|---------|-------|----------|----------|------------|------------|----------|----------|----------|----------|----------|----------|------------|----------|------------|----------|----------|------------------|----------|----------|--------|-------------|--------|-------|-----------|------------|------------------|--------|---------|--------|--------|---------|--------|-----------|---------|--------------------------| | Jio V | | | | € 10.0 | | 0.2 | 0.2 | 0.5 | 0'0 | v
§0 | 900 | | 0.5 | | v 0.3 | 0.3 | | | - P.O | T | . O.1 | * 0 | V | v 0.1 | | 10.0 | 000 | 0.6 | 1.3 | 5.2 | 0.0 | 60.5 | 25.0 | 2 0.5 | | #.'Q' > | < 0.8 | | | 1,0 | 0,1 | T 0 | | | 90 | 0.5 | | 6.01 | - 10.0 | | 9.0 | 0.2 | 1.0 | 0.2 | 3.0 | | 01. | • 1.0
• | | 9.0 | 90 | 10 | > 0.5 | 3,0 | o.5 | 9°0 | S:0 | 98
V | 0.5 | < 0.5 | 10.0 | 0.01 | 0.7 | 0.7 | 3.0 | 0.1 | 10 | 2 6 | 2.0 | | 90 | < 0.5 | 10 | > 0.6 | < 0.5 | 0.5 | 9.0 | n s | | 5.0 | 17 | 50 | | 3.9 | | 3.3 | 1.4 | 5.0 | 1.6 | 2.0 | 2,0 | 2.0 | 6.3 | 2.0 | 5.0 | > 5.0 | 2,4 | 2.7 | 5 2.7 | .2.0 | 3.1 | 2.0 | 26 | 2:0 | . S.0 | 4.3 | 86 | 3.5 | 1.4 | 5.0 | 2.0 | 2.0 | D. S. | 2.0 | 2.0 | 1.8 | 0°9 > | 2:3 | 3.2.7 | 2.2 | 5.0 | 2,8 | | | 076 | 240 | 230 | .1 22.0 | 21.0 | in . | 16.8 | 9.5 | 34.0 | 3.0 | 30 | 28 | 6.6 | 7.0 | 20.0 | 12.0 | 15.0 | 12.0 | 18.0 | 10.0 | - 10.0 | 9.5 | 88 | 40.0 | v 10.0 | - 10,0
- 10,0 | 201 | 23 | 107 | 4.7 | 20.0 | 3.0 | | 2 C | | 20.0 | 43.0 | 6.6 | 8,8 | 29.0 | 34.0 | 1.78 | 26.0 | 5,274,030,030,030,030,03 | | 0.0 | 120 | 1 2 | 0.2 | 0.0 | | 0.2 | 0.0 | 0.2 | 0.1 | 5 | T. 0 | + o | - P. | | < 0.2 | > 0.2 | | UB3 17 | > 02 | × 0.2 | 3 0.2 | .0.2 | < 0.2 | 0.2 | V 0.2 | 0.2 | 0.2 | 0.0 | 0.4 | 1.7 | 0.1 | A 0.1 | - T | | | 0.2 | 2'0 | F.0 | 1.0 LEU | 6.8 | 70 | 3 0.2 | というとのではないのである | | | | | 86 | 1.6 | | 15.5 | 17.3 | 0.09 | 2.0 | - 10,0° | < 10.0 | 10.0 | 10.0 | 7.0 | 1.5 | 1 | 2,1 | 5.5 | e 1 | - 10.0 | 7.2 | 40.0 | 3.0 | 2.4 | 01 - | 160 | 1.5 | 2 2 | 9, 6,
6, | 10.0 | 1.0 | | | 2 6 6 7 V | 92 | 0.2 | 9'7 | 4.2 | 8.7.8 | 3 3.2 | . 10.0 | 1.8 | (本の)のでは、大名というのと | | o F | | | 0,1 | | | 4.5 | 12.6 | 50.0 | 0.4 | 1.0 | 4.0 | 01 | * 1.0 | < 56.0 | - 1.0 | 0,1 | 0.3 | 9.0 | 4.0 | < 1.0 | 0°F | - 1.0 | 1.6 | 9,1 | 3 20 | √ 3.0 | 0'ë | 7.7 | 12.2 | 50.0 | 0.3 | 7.0 | 9.5 | y v | 2005 | | 1.0 | 0.3 | J 0.4 | ¢4 > | • | o'1 > | Calculation Control | | - 404 | 26. | 3 8 | 130 | 99 | | 552.53 | 806.11 | 2900.00 | 38.00 | æ | \$ | 320 | 9 | 230 | 130 | 88 | 34 | 100 | • 100 | 400 | . 680 | > 100 | - 200 | 220 | 69 | 1300 | 8 | 00 207 | 187.18 | 680.00 | 37.00 | 8 | 2 2 | 3 10 | | 1800 | 160 | 130 | 3 92 | 120 | 119 | 130 | | | 50111preu
05/0//00 | 00/06/20 | 11/02/99 | 02/01/00 | 05/05/00 | | Mean | Std. Dev. | Max | Min | 01/18/96 | 03/25/96 | 06/12/96 | 96/50/60 | 01/30/97 | 06/11/97 | 09/04/97 | 11/19/97 | 02/11/98 | 05/13/98 | 86/20/80 | 11/04/98 | 02/11/99 | 05/04/99 | 07/29/99 | 11/03/99 | 02/01/00 | 02/03/00 | | Std Dev | Max | Min | | 03/20/96 | | | | | | | | | | | | | | | NHF.10 | NRF-10 | | | | | | NRF-11 | | | | NRF 12 | NRF 12 | NRF 12
NPF 10 | NEE 12 | NRF-12 | NRF-12 | NRF-12 | NRF-12 | NRF-12 | NRF-12 | NRF-12. | | 20.0 20.0 20.0 20.0 20.0 14.1 5.7 23.0 6.3 J = Result is detected below the reporting limit or is an estimted concentration. B = Compound is also detected in the blank. Q = The reporting limit was elevated due to high analyte levels The MDL was raised to accomodate the detection of constituents in blank | Well | Date | | | | | | | | | | |------------------|-----------|--
--|-----------|--|--|----------|---|---|----| | Number | Sampled | Iron | Lead | Manganese | Mercury | Nickel | Selenium | Silver | Thaillium | | | NRF-12 | 07/29/99 | 250 | 3) 16 | 1.3 | < 0.2 | J 18,0 | 05 | 90 | ۵ 0,1 | ٧ | | NRF-12 | 11/03/99 | 83 | 9.2 | < 10.0 | < 0.2 | 0'21 | 20 | 99 | 70. | ٧ | | NRF 12 | 02/05/00 | 420 | 9.0 | < 10.0 | < 0.2 | | 3.2 | 10.0 | | * | | NRF-12 | 02/03/00 | 67) | 3.0 | 9:1 | 3 0.0 | 4 13.0 | 2,0 | < 10.0 | > 10.0 | | | | | | | | | | | | | | | | Mean | 255.88 | 4.1 | 0.9 | 0.2 | 19.1 | 3.2 | 0.7 | 0.2 | | | | Std. Dev. | 465.34 | 12.2 | 3.9 | 0.0 | 16.5 | 1.4 | 0.6 | 0.2 | | | | Max | 1900.00 | 50.0 | 10.0 | 0.2 | 50.0 | 5.0 | 2.0 | 0.5 | | | | MIIN | 10.00 | 0.3 | 0.2 | 0.1 | 1.0 | 1.8 | 0.1 | 0.0 | | | (DE 45 | 90/00/100 | | | | | | | | | | | NDE 45 | 09/22/30 | 2500 | 0. | 0.04 | A. 0.1 | 0.0 | • | 2.0 | ∞ 0,5 | | | NHT-13
NDF 45 | 03/20/96 | 3400 | 2.0 | 60.0 | 5 | 000 | 2.0 | 2.0 | < 0.5 | | | 2 - 1 1 1 1 | 06/13/96 | 818 | | 0.03 | # 6 | 0,0 | 1.0 | 2.0 | 9.0 | | | NET-13 | 98/90/80 | 82 | C.
V | 10.0 | - O- | 0.0 | 1.0 | 2,0 | \$************************************* | | | SI-THIN | 02/03/97 | 18906 | 0.03 | 300.0 | | 40.0 | 0,1 | | | | | 10 F 10 | 76/60/90 | 4200 | 11 | 4.3 | V 0.25 | 16.0 | 60 | 2.0 | 5 | | | NFF-13 | 09/05/97 | 20506 | 3.0 | 220.0 | 0.2 | 34.0 | 2.0 | > 0.5 | < 0.3 | | | NHF-13 | 18/81/11 | 3600 | | | | 15.0 | 2.5 | o.5 | 00 | | | DE 43 | 02/11/98 | 8 3 | 1.6 | 2.4 | | 12.0 | 4.1 | < 0.5 | . v. v | an | | NEDE 10 | 09/19/98 | 028 | ر
د وع | J 15.0 | 0.2 | ه.
1.4 | 4. | < 0.5 | > 0.1 | | | NPE-13 | 11/04/98 | 01/10 | C 6 | | 20 2 | 18.4 | > 2.0 | 0.5 | T0 × | | | NPE-13 | 05/11/60 | Dece. | 9 C | 0,00 | 7 . | O.E3. | 33 | g'a v | 6.1 | | | | 05/05/99 | Seas. | | 9 5 | 70 | 8 6 | 2.0 | < 0.5 | 70° | ₩. | | | 66/67/20 | 3500 | | 2 6 6 8 | 7 . | |)
0 | 6 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 50 | 7 | | RF 13 | 11/03/99 | 2800 | 202 | 0.00 | y c | 7 2 20 | Orac V | en s | a a | | | NRF 13 | 02/02/00 | 15100 | 1.0 | 269.0 | 20 | 48.0 | 80 | | 5 4 | | | | | \$16FF1 3100 | .3 1.6 | 50.0 | 20 | 30.0 | 109 | | 200 | | | | | | | | | | | } | 2 | | | | Mean | 4485.00 | 4.8 | 67.0 | 0.2 | 16.6 | 2.8 | 0.9 | 0.2 | | | | Std. Dev. | 5512.49 | 12.1 | 79.8 | 0.0 | 14.0 | 1.8 | 7.0 | 0.2 | | | | Max | 20500.00 | 20.0 | 300.0 | 0.2 | 41.8 | 5.0 | 2.0 | 0.5 | | | | MIN | 820.00 | 0.3 | 2.4 | 0.1 | 0.0 | 6.0 | 0.5 | 0.0 | | | 18652.15 | 06/15/90 | 2 | | Š | | | | | | | | USGS-12 | 06/90/80 | 25 4 | 2 9 | OBI S | | 1.0 | 2.0 | | | | | USGS-12 | 10/10/90 | 200 | 2 9 | e de | | | 2 5 | | | | | | 12/11/90 | 140 | 1.0 | 00, | | 2 - | | 2 5 | | | | | 02/07/91 | 09 | | 2001 | 6 | | | | | | | | 04/11/91 | 140 | | | | 2 | 2.00 | | | ν, | | | 06/10/91 | 120 | 1.0 | | | 10 | | | | | | | 09/06/91 | 20 | 0)1
V | | i i | 10 | | 2 0 | | | | | 12/05/91 | 70 | 91 | | V 0.1 | 92 | | 101 | | | | | 03/12/92 | 20 | 1.0 | | × 0.1 | 1.0 | | | | | | | 06/19/92 | 05 | 1.0 | | A. 0.1 | 1.0 | | 0'1 | | | | | 09/18/92 | 260 | 1.0 | | 1 .0 > | 0'9 | | 0;F > | | | | | 12/01/92 | 3000 | 0°1 > | | - 0.1 | 2,0 | | 0,1 | | | | | 04/13/93 | • | 1.0 | | ¥0 × | 0.1 | | | | | | CF 0500 | 1000 | COMMUNICATION AND ADDRESS OF THE PARTY TH | THE PROPERTY OF THE PARTY TH | | Shelle and a second sec | The state of s | | # 12 M | | | 19.1 17.2 70.0 9.1 10.0 10.0 10.0 10.0 10.0 J = Result is detected below the reporting limit or is an estimted concentration. U = The MDL was raised to accomodate the detection of constituents in blank B = Compound is also detected in the blank. Wa = Post digestion spike recovery fell between 40-85% due to matrix interference D = Results were the result of a dilution Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations
in ppb) Q = The reporting limit was elevated due to high analyte levels | 0.5 | Date
Sampled | Iron | Lead | Manganese | Mercury | Nickel | Selonium | Silver | Thallium | | |----------------|-----------------|------------|------------|--------------|---------------|------------|------------|-----------|---------------|--------------| | | 09/16/93 | 40 | 1.0 | | 1°0 | 1.0 | | 1.0 | | | | | 11/05/93 | 140 | 9.1 | | * (1.1 | 2.0 | | 1.0 × | | | | USGS-12 (| 03/11/94 | 1300 | œ. | | < 0.1 | 1.0 | | C,T | | | | | 06/10/94 | 200 | | | . 0.1 | 0. | | 4.0 | | | | | 09/09/94 | 190 | 1.0 | | o.1 | 97 | | 1,0 | | | | | 10/27/94 | 8 | 0') | | | 97 | | 0.1 | | | | | 03/20/95 | 320 | 0.1 | 10.0 | < 0.1 | | Ž | 1.0 | 6.5 | ¥ | | | 06/14/95 | 90 | 6,1 | 10.0 | < 0.1 | - 01 | 2.0 | 1.0 | ≥ 0,5 | | | | 09/12/95 | 000 | 63 > | | e e e | 0. | 2.0 | ~ 0't | 9'0 > | * | | | 11/02/95 | 8 | c.1> | 200 | | 1.0 | 5.0 | 4.0 | > 9'0 > | * | | USGS-12 (| 01/16/96 | 30 | 07 | 4 16.0 | - 0.1 | × 1.0 | 2.0 | 6. | < 0.5 | ~ | | | 03/21/96 | 96 | 4.0 | > 10.0 | 10 | 4.0 | 2.0 | ort > | 9'0 | ¥ | | | 06/10/96 | 8 | 0.1 | 0,01 | 10 | o'i > | 2.0 | - 1.0 | < 0.5 | ٧ | | | 96/20/60 | 06 | 9 | | 1°0 > | - 1:0
- | 2.0 | 01 > | < 0.5 | * | | USGS-12 | 02/04/97 | 830 | > 50.0 | 14.0 | | - 10.0 | 2.0 | | | ٧ | | | 26/60/90 | 82 | 40 | 1.3 | < 0.2 | 2.8 | 1.8 | - 0.5 | < 0.3 | | | | 26/20/60 | 42 | 0.1 | 1.6 | < 6.2 | 2.4 | < 5.0 | < 0.5 | > 0.3 | ٧ | | | 11/18/97 | æ | 60 | - 41 | < 0.2 | 8.4 | 2.0 | < 0.5 | 0.0 | 2 Sé | | | 02/11/98 | 32 | 5,0 J. | 2.5 | ua./ o.1 | 4.2 | 1 2.5 | 9'0 | 7.
6 | CO | | USGS-12 | 05/12/98 | 8 | 0'1. | 1.3 | 0.2 | 30 % | 2.5 | 900 | - 0.1 | 13 | | | 08/04/98 | 6 0 | 01 > | 0'01 > | < 0.2 | 0.01 | > 5.0 | 9:0 | ro > | ¥ | | | 11/04/98 | < 100 | - 1.0 | 8'0 | 0.2 | 9.0 P | رة 2.5 | 90 | £0 ° | *** 3 | | | 02/11/99 | - 100 | er > | < 10.0 | o.2 | 4 10.0 | 0.0 | 90 | F0 × | v | | USGS 12 | 66/50/50 | ./ 86 | 0'1 > | 10,0 | < 0.2 | 10.0 | 0'9 | 90
V | ¥0 | 7 | | USGS 12 | 07/29/99 | 98 | 1,5 | 0.01 | 0.2 | 10.0 | 2 | in o | | ٧ | | | 11/03/99 | n l | 5 27 | 1,7 | < 0.2 | 900 | 0.5 | 9.5 | 1.0 | mog. | | | 02/02/00 | 3 57 | د. 1.3 | 42 | V V | V 40.0 | 2.8 | 10.0 | v 10.0 | ٧ | | | 05/03/00 | 27 | 3.0 | 40.0
40.0 | V → 0.2 | < 40.0 | 0.5 | 10:0 | 10.0 | ₩ | | | | | | | | | | | | | | | Mean | 214.66 | 2.3 | 8.3 | 0.1 | 2,9 | 2.6 | 0.0 | 0.3 | | | | Std. Dev. | 506.76 | 7.7 | 4.6 | 0.0 | 3.3 | 1.3 | 0.2 | 0.2 | | | | Max | 3000.00 | 50.0 | 20.0 | 0.2 | 0.0F | 5.0 | 0.1 | 0.0 | | | | UIIM | 00.01 | 0.0 | 0.0 | 5 | 200 | 2 | | | | | 11868.97 | 11/30/89 | 80 | 8.0 | - 10.0 | v | 0,- | 2.0 | 0.7 | | | | USGS-97 | 03/19/90 | 98 | 6.0 | 2'0' | F.0 > | 20 | 2.0 | 0.1 | | | | USGS-97 | 06/20/90 | 96 | 3,0 | 0.01 | 10 | 9 | 2.0 | V 10 | | | | USGS-97 | 08/01/90 | 40 | 90 | 0.01 | ۸
4. | 6'8 | 2.0 | 0'J > | | | | USGS-97 | 10/04/90 | 320 | 3.0 | 10.0 | F.0 | 01. | 2.0 | 01 > | | 7 | | USGS-97 | 12/02/90 | or > | 0,0 | o'0). > | < 0.1 | - 1.0 | 1.0 | 0°L > | | | | USGS-97 | 03/13/91 | 10 | 2.0 | | P.O. | 2.0 | | 0′1 | | | | USGS-97 | 16/0/90 | 98 | • | | • | 0F | | 9.
V | | | | USGS-97 | 09/05/91 | 150 | 3.0 | | \$ | s 1.0 | | 4.0 | | 2 | | USGS-97 | 12/03/91 | 260 | 6.0 | | > 0.1 | 2.0 | | 1.0 | | | | USGS-97 | 03/16/92 | 8 | ~ 1.0 | | o.1 | 1.0 | 2. | 2 | | | | USGS-97 | 06/17/92 | 09 | • | | | 0(1
V | 0 | | | | | USGS-97 | 09/21/92 | 230 | 3.0 | | < 0.1 | 40 | | 0°7 | | | | USGS-97 | 12/08/92 | 140 | 2.0 | | V 0.1 | 20 | | 0,1 | | | | 19050 | 04/06/93 | 20 | 7 0 0 C | | 一大学を開発されて | | 現代 子学教育学学学 | | 一は多な。たけなれて好きの | S | 7.2 10.0 20.0 9.3 10.0 6.0 20.0 20.0 14.0 14.2 80.0 2.9 100.0 170.0 110.0 120.0 120.0 J = Result is detected below the reporting limit or is an estimled concentration. $B = {\sf Compound} \ is \ also \ detected in the blank, \qquad J = {\sf Result} \ is \ detection \ of \ constituents \ in \ blank.$ $U = {\sf The MDL was \ raised} \ to \ accompadate \ the \ detection \ of \ constituents \ in \ blank.$ Q = The reporting limit was elevated due to high analyte levels Wa = Post digestion spike recovery fell between 40-85% due to matrix interference D = Results were the result of a dilution Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations in ppb) | 0
+
V | Manganese | Mercury
< 0.1 | Nickel
• 1.0 | Sciennium | | - maillium | 2U7 | |-------------|---------------------------|------------------|-----------------------------|--|--
--|--| | | | + '0 > | 0° × | | 0.1 | | | | 2.0 | | F 0 ≥ | | | 91 | | | | 1.0 | | < 0.1 | 1.0 | | 0.1 | | | | 1.0 | | 1.0 | 2.0 | | 0.1 | | | | 2.0 | | - 0.1 | 4.0 | | or > | | | | 9 | | v 9.1 | 1:0 | | > 1.0 | | | | 2200.0 | 20.0 | 3 | V 10 | 3.0 | 4.0 | 50. | 140.0 | | | 0.01 | T'O × | 1,0 | 2.0 | 4.0 | > 0.5 | 100.0 | | 7.0 | 000 | V 0.1 | 1.0 | 2.0 | 0,1 | 90 > | 110.0 | | | 201 | F0 > | 4 1,0 | 2.0 | 07 | V 0.5 | 0'06 | | | 000 | 10 v | 2 V | 3 | 9.1 | 30°C | 100.0 | | 101 | 40.0 | | 2 5 | 2 60 | 2 C | 0 4 6 | 0.000 | | 1.0 | 10,01 | 100 | | 200 | 21 2 | 90 | 80.0 | | 20.0 | 6,0 | | 10,0 | 2.0 | | | 190.0 | | | 6.4 | < 0.2 | 3.4 | 4 | 9'0 | < 0.3 | 0.66 | | 2.4 | 6.7 | 70 | 2.6 | 2.6 | 1.0 | < 0.3 | 130.0 | | 2.4 | 2.0 | | 3.8 | 2:2 | 1:0 | 0.0 | 136.0 | | 1.8 | • | U&J 0.1 | 4.6 | . 2.8 | S.0. > | . 0.1 | 3 110.0 | | 0.1 | 8.0 | < 0.2 | 4.0° L | 978 | 9'0 | | ئ 100.0 | | 1.0 | 10.0 | × 0.2 | 0.01 | 6.9 | \$ 0.5
V | , r'o > | 109.0 | | 2.7 | 61 | V 0.2 | 2.0 | 2.9 | 9,0 | 1.0
V | 0'56 | | ¥ | 16.0 | 0.2 | √ 10,0 | 9.0 | 5,0 ≥ | v 0.1 | 111.0 | | 9,2 | 10.0 | V V | 0.01 | 5.0 | > 0.5 | 0,1 | 1000 | | ¥ . | 0.01 | 4 0.2 | 4 10.0 | 200 | 9.0° |
V | 1000 | | | 0.01 | 7.0° (° | 000 | € 5.0 | 900 > | F.0 | 0.86 | | | | 7.0 | 0.04 | 3 | 002 | 201 | 110.0 | | | | 9 | 3 | 2 | 9 | 9.
V | 110.0 | | 55.8 | 8 : | 0.1 | 9.0 | 7-6 | 0.0 | | | | 339.0 | 4.5 | | 8. S. S. | 1.7 | 0.0 | 0.3 | 110.8 | | 2200.0 | 20.0 | 0.2 | 10.0 | 5.0 | 1.0 | 1 0.3 | 190.0 | | 1.0 | 0.4 | 0.1 | 0.4 | 1.0 | 0.1 | 0.0 | 80.0 | | | | | | | | | | | 2.0 | - 10.0 | F 0.1 | 0. | c, | 1.0 | | 100.0 | | 4.0 | | - 0.1 | 1.0 | 1.0 | × 1.0 | | 0.081 | | 2.0 | | > 0.1 | 1.0 | 0.1 | ۰ ± 1 | | 120.0 | | · | 10.0 | ¥ 0.1 | < 1.0 | 1.0 | 91 | 15 | 120.0 | | 2.0 | 10.0 | 1.0.
A.1 | 2.0 | 0;t > | 0.1 | | 120.0 | | 2.0 | 10,0 | 5 | 2.0 | 0.1 | 0,7 | | 140.0 | | 50 | | A. 0.1 | v. 1.0 | | 0.
V | | 30.17.77 | | 2.0 | i i | F a ≥ | 011 | | | | | | 2.0 | | 10 > | 20.2 | | | | + | | 1.0 | | 10 v | 1.0 | | | | | | 1.0 | | v | 1,0 | | | | | | | | < 0.1 | 0,1 | | 9 | | | | 1.0 | 150379 off Comya prince - | | D. 2002 Sec. 200 Sec. 3 252 | The state of s | | | | < 0.1 | 1.0 | | -
-
-
-
- | | | B = Compound is also detected in the blank. J=Result is delected below the reporting limit or is an estimned concentration. onstituents in blank Q=The reporting limit was elevated due to high analyte levels U = The MDL was raised to accomodate the detection of constituents in blank Wa = Post digosition spike recovery fell between 40-55% due to matrix interference D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution D = Results were the result of a ditution | ı | |--| | | | | | | | | | | | | | 1 | | 0.01 | | 10.0 | | 10.0 | | 0'01 | | 0.0 | | 2 | | e, | | ္ပ | | | | | | ~ | | 9 | | | | | | ٠. | | _ _ | | ર 💂 | | 0.01 | | 3.0 | | 1.8 | | 17.0 | | | | 7.6 | | 8.0 | | 7.0 | | | | 9 | | 0 | | 10.0 | | 0 | | 30.0 | | 10.0 | | | | | | | | | | | | | | The second secon | J = Result is detected below the reporting limit or is an estimted concentration. Q = The reporting limit was elevated due to high analyte levels B = Compound is also defected in the blank, J = Result is det U = The MDL was raised to accomposate the detection of constituents in blank Wa = Post digestion spike recovery fell between 40-85% due to matrix interference D = Results were the result of a dilution Appendix E, Table 2 - Metal Concentrations 1989 to Present
(Concentrations in ppb) | | Iron | Lead | Manganese | Mercury | Nicket | Selenium | Silver | Thallium | ZINC | |---------------------|------------|-----------------|-----------|--------------|--------|----------|---------------|------------|---------| | | 160 | 1.0 | | ¥ 0.1 | 2.0 | | 01 | | | | | 130 | 1,0 | | ¥ 0.1 | 4.0 | | | | | | | - 80 | 1.0 | | F.0 > | | | | | | | | 70 | 0.1 | | 1.0 A | 0.1 | | | | | | | 70 | 2.0 | | 1.0 | 2.0 | | × 1.0 | | | | USGS-99 03/14/94 | 130 | 20 | | 1'0 | 1.0 | | 0' 1 > | | | | | 099 | 3.0 | | 1.0 | 0; | | | | | | | 360 | 2.6 | | F.0 > | 5.0 | | | | | | | 310 | 9 | | > 0.1 | 2.0 | | 1.0 | | | | | 089 | 2.0 | ≥ 10.0 | < 0.1 | 9 | 2.0 | 01. | | 100.0 | | | 340 | 2.0 | 20.0 | **** × | 1.0 | 2.0 | × 10 | 5.0 | 0.08 | | 7.1 | 2200 | 2.0 | 4 10.0 | . O.1 | 2,0 | 2.0 | | | 100.0 | | | 09 | 1.0 | 0.01 | , 04 | 2,7 | 1.0 | | 0.8 | 006 | | USGS-99 01/17/96 | 20 | 1.0 | 0'01 | 7 | 2 | 1.0 | | | 80.0 | | | Q | 20 | - 10.0 | 2.0 | 1.0 | 2.0 | | 979 | 0.06 | | | 06 | < 1.0 | < 10.0 | ¥ 0.1 | 0.1 | 977 | 0.1 | | 90.0 | | | 2 | 1.0 | - 10.0 | - 0.1 | د 1,0 | 1.0 | 01 > | 9'0 | 70.0 | | | 5100 | 600 | 28.0 | | 0'01 ⊳ | 0,1 | | | 310.0 | | | 110 | 1.2 | 4.8 | < 0.2 | 3.0 | 1.4 | 90 | 8°0 | 93.0 | | | 20 | 7. | - | 2.0 | 2.9 | 5.0 | 970 > | 6.0 | 110.0 | | | 100 | אַ | | | 8.6 | 1.8 | 6,1 | 0.0 | 130.0 | | | - 73 | 2') | | UB.) 0.1 | 4.5 | . J. 8 | < 0.5 | < 0.1 | 0,007 | | 02/21/60 88-22/60 | 008 | 7 | 15.0 | × 0.2 | 3.1 | 3.1 | > 0.5 | 6.1 | J 160.0 | | 0503-99 08/04/98 | 3 (| - 10 | 10.0 | V 0.2 | 40.0 | < 5.0 | 9'0 | 1 0 | 106.0 | | 7. | 700 | | 2.0 | V 95 | * | 2.2 | ~ 0.5 | × | 0.79 | | | 3 8 | | | 0.2 | 10,0 | 0.9 | 9'0 | > 0,1 | 102.0 | | | 3 2 | | | 20 | 10,0 | 2.0 | 90 | - P0 | 120.0 | | | | 2 | | - 0.2 | 10.0 | 2.0 | < 0.5 | | 94.0 | | | 000 | | 906
V | 0.2 | 10.0 | 0.50 | > 0.5 | To v | 0.00 | | 11868 99 05/02/00 | A Sec | 9 7 | | > 0.5 | 00₩ | 9'9 | 10.0 | 40.0 | 110.0 | | | 8 | 9.9 | | 20 > | 40.0 | 8.4 | × 10.0 | . foo | 110.0 | | Mean | 408.20 | 5.0 | 40 5 | | | | | | | | Std Dev | 969 55 | 0.0 | 6.03 | 0.1 | 2.9 | 2.3 | 0.0 | 0.3 | 111.2 | | Max | 5100 00 | 9,0
60.0 | 6.9 | 0.0 | 3.1 | 1.6 | 0.2 | 0.2 | 45.8 | | Min | 40.00 | 1.0 | 1.3 | 5:0
0 | 10.0 | 0.0 | 0.7 | 0.5 | 310.0 | | | | (1) (1) (1) (1) | | | | | | 200 | 007 | | | 9 | 2.0 | 0.01 | 0 1 | 2.0 | 2.0 | | | out. | | | 0, > | 2 | 0.01 | | 1.0 | 20 | | | out | | | 4 | 0,1 | < 10.0 | ≥ 0.1 | 0.1 | 5:0 | | | 001 | | | . 80 | 10 | o'01 > | , B. | 2.0 | 0,1 | | | 000 | | | 1300 | 9.0 | 20.0 | 70 | 1.0 | 4.0 | | | 20.0 | | | 300 | 2.0. | < 10.0 | < 0.1 | 2.0 | 20 | | | 10.0 | | | 8 | 1.0 | | < 0.1 | 4.0 | | | | | | | 480 | 1.0 | | > 0.1 | 2.0 | | | | | | | 2100 | 2.0 | | v > | 8,0 | | | | | | | 130 | 2 | | < 0.1 | 0,T | | | | | | | 8 | 9 | | 1.0 > | 1.0 | | | | | | 78/91/10/2 03/19/37 | One | | | 1. 0 | 70 | | | | | | | | | | | | | | | | B = Compound is also detected in the blank. J=Result is detected below the reporting limit or is an estimited concentration. constituents in blank Q=The reporting limit was elevated due to high analyte levels U = The MDL was raised to accomodate the detection of constituents in blank Wa = Post algosition spike recovery felt between 40-85% due to matrix interference D = Results were the result of a dilution Appendix E, Table 2 - Metal Concentrations 1989 to Present (Concentrations in ppb) | Well Date
Number Sempled | <u>.</u> | Ive | Maneage | Mercury | Nicket | Selonium | Silver | Theillium | Zine | |-----------------------------|--------------|--------|---------|--------------|----------|----------|----------|-----------|-----------| | è | 30 | 1,0 | | 0.1 | 2.0 | | | | | | 115GS-102 04/06/93 | 1200 | 2 | | Fo · | 1.0 | | | | | | | 20 | 1.0 | | 10 | 1.0 | | T) | | | | | 190 | 1.0 | | \$ ° | 61 | | | | | | | 440 | 9 | | 7:0 | | | | | | | 0.70 | 400 | J.O | | 2 | e. | | 1.0 | | | | USGS-102 06/09/94 | 12000 | 4.0 | | . 0.1 | 3.0 | | 1.0 | | | | | - 80 | 97 | | 0.4 | 02 | | 1.0 | | | | | 870 | 24 | | FG × | 1.0 | | - 1.0 | | | | 02 | 0#6 | 92 | 10.0 | 70 | γ (10 | c, | - 1.0 | | < 10.0 | | | 300 | 0.1. | 40.0 | 1 0 | A. 1.0 | 5:0 | 0 | < 0.5 | < 10.0 | | | 450 | 91 | 10.0 | ď | 1.0 | 2.0 | 01. > | 9.6 | < 10,0 | | USGS-102 11/07/95 | 9 | 120 | 40.0 | 60 | 0,1 | 2.0 | 4.0 | < 0,5 | < 10.0 | | USGS-102 01/18/96 | 180 | 9 | < 10.0 | F.0 > | - 01 > | 2.0 | < 1.0 | < 0.5 | < 10.0 | | USGS-102 03/19/96 | 260 | 1.0 | < 10.0 | 3 | V (1.0 | 2.0 | - 1.0 | < 0.5 | < 10.0 | | | 110 | 4.0 | v 10.0 | 1 0 ≥ | c1> | 2.0 | 0.1 | < 0.5 | < 10.0 | | | 20 | 4.0 | 10.0 | 6 | - 1.0 | 2.0 | 01. | < 0.5 | < 10.0 | | | 99 > | > 20.0 | 20 | | > 10.0 | 2.0 | | | < 20.0 | | | 110 | 0°4 | 8.0 | 80 | 3.1 | 4.8 | 9'0 > | < 0.1 | 7.3 | | | 8 | .0.3 | 6 | 700 | 2.6 | 3.5 | < 0.5 | < 0.1 | 8.2 | | USGS-102 11/17/97 | 68 | 3,0 | 2.6 | 10 | 4.2 | 2.4 | 8 | 0.0 | | | J | 907
V | 5.04 | 0.1 | 1817 0.2 | 4.3 | . 27 | 9'0 > | < 0.1 | (78) 18.0 | | | 06 If | 1.0 | 1.2 | 0.2 | J. 0.5 | 2.2 | 9'0 | 1'0 > | J 8.4 | | | 80 | 40 | - 10.0 | 0.2 | < 10.0 | 0'9 | 9'0 > | - 0,1 | > 10,0 | | USGS-102 11/02/98 | 280 | P 1.0 | 6.4 | < 0.2 | 97Z P | 3.0 | < 0.5 | , O. | 8'6 f | | USGS-102 02/09/99 | . 100
100 | . 10 | 700 | 6.2 | < 10.0 | 0'9 > | > 0.5 | r,0 > | < 20.0 | | USGS-102 05/03/99 | 220 | 4.0 | 1.6 | < 0.2 | > 10.0 | 200 | 9.6 | > 0.1 | 39.0 | | | 88 | .1 22 | - 10.0 | 79 0.3 | 10.0 | < 5.0 | 90 | V | > 9.1 | | | 75 | -7 | 0'01 | < 0.2 | - 10.0 | €.0 | < 0.5 | - 6 | > 20.0 | | | 82 | 92 | c 10.0 | < 0.2 | 0'0k > | 3.8 | < 10.0 | - 40°0 | < 20.0 | | | 320 | oe > | 3.3 | . 0.0 | ~ 40.0 | 0.6 | v 10.0 | v 10.0 | > 20:0 | | | | | | | | | | | | | Mean | 572.98 | 2.4 | 8.0 | 0.1 | 2.9 | 2.6 | 0.8 | 0.3 | 13.4 | | Std. Dev. | 1878.10 | 7.6 | 4.5 | 0.1 | 3.2 | 1.3 | 0.3 | 0.2 | 7.4 | | Max | 12000.00 | 20.0 | 20.0 | 6.0 | 10.0 | 2.0 | 1.0 | 0.5 | 39.0 | | Min | 10.00 | 0.3 | 7.0 | 0.1 | 0.5 | 1.0 | 0.3 | 0.0 | 7.3 |